Age-related mushroom body expansion in male sweat bees and bumble bees


  • 1.

    Kolb, B. & Gibb, R. In Cognitive Neurorehabilitation: Evidence and Application Vol. 2 (eds Stuss, D. et al.) 6–21 (Cambridge University Press, 2008).

    Chapter 

    Google Scholar 

  • 2.

    Frankenhuis, W. E. & Nettle, D. Integration of plasticity research across disciplines. Curr. Opin. Behav. Sci. 36, 157–162. https://doi.org/10.1016/j.cobeha.2020.10.012 (2020).

    Article 

    Google Scholar 

  • 3.

    Greenough, W. T., Black, J. E. & Wallace, C. S. Experience and brain development. Child Dev. 58, 539–559 (1987).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Gronenberg, W., Heeren, S. & Hölldobler, B. Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J. Exp. Biol. 199, 2011–2019 (1996).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Seid, M., Harris, K. & Traniello, J. Age-related changes in the number and structure of synapses in the lip region of the mushroom bodies in the ant Pheidole dentata. J. Comp. Neurol. 488, 269–277. https://doi.org/10.1002/cne.20545 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Withers, G. S., Fahrbach, S. E. & Robinson, G. E. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364, 238–240. https://doi.org/10.1038/364238a0 (1993).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Withers, G. S., Fahrbach, S. E. & Robinson, G. E. Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. J. Neurobiol. 26, 130–144. https://doi.org/10.1002/neu.480260111 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Fahrbach, S. E., Moore, D., Capaldi, E. A., Farris, S. M. & Robinson, G. E. Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn. Mem. 5, 115–123 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Farris, S. M., Robinson, G. E. & Fahrbach, S. E. Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21, 6395–6404. https://doi.org/10.1523/JNEUROSCI.21-16-06395.2001 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Durst, C., Eichmüller, S. & Menzel, R. Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav. Neural Biol. 62, 259–263. https://doi.org/10.1016/S0163-1047(05)80025-1 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Tomé, H. V. V., Rosi-Denadai, C. A., Pimenta, J. F. N., Guedes, R. N. C. & Martins, G. F. Age-mediated and environmentally mediated brain and behavior plasticity in the stingless bee Melipona quadrifasciata anthidioides. Apidologie 45, 557–567. https://doi.org/10.1007/s13592-014-0272-7 (2014).

    Article 

    Google Scholar 

  • 12.

    Jones, B., Leonard, A., Papaj, D. & Gronenberg, W. Plasticity of the worker bumblebee brain in relation to age and rearing environment. Brain Behav. Evol. 82, 250–261. https://doi.org/10.1159/000355845 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Fahrbach, S. E., Giray, T., Farris, S. M. & Robinson, G. E. Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight. Neurosci. Lett. 236, 135–138. https://doi.org/10.1016/S0304-3940(97)00772-6 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Molina, Y. & O’Donnell, S. Age, sex, and dominance-related mushroom body plasticity in the paperwasp Mischocyttarus mastigophorus. Dev. Neurobiol. 68, 950–959. https://doi.org/10.1002/dneu.20633 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    O’Donnell, S., Donlan, N. A. & Jones, T. A. Mushroom body structural change is associated with division of labor in eusocial wasp workers (Polybia aequatorialis, Hymenoptera: Vespidae). Neurosci. Lett. 356, 159–162. https://doi.org/10.1016/j.neulet.2003.11.053 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Gronenberg, W. & Riveros, A. J. In Organization of Insect Societies: From Genome to Sociocomplexity (eds Gadau, J. & Fewell, J.) (Harvard University Press, 2009).

    Google Scholar 

  • 17.

    Beani, L., Dessì-Fulgheri, F., Cappa, F. & Toth, A. The trap of sex in social insects: from the female to the male perspective. Neurosci. Biobehav. Rev. 46, 519–533. https://doi.org/10.1016/j.neubiorev.2014.09.014 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Fletcher, D. J. & Michener, C. Kin recognition in animals (Wiley, 1987).

    Google Scholar 

  • 19.

    Wcislo, W. T. The role of learning in the mating biology of a sweat bee Lasioglossum zephyrum (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 20, 179–185. https://doi.org/10.1007/BF00299731 (1987).

    Article 

    Google Scholar 

  • 20.

    Barrows, E. M., Bell, W. J. & Michener, C. D. Individual odor differences and their social functions in insects. Proc. Natl. Acad. Sci. USA 72, 2824–2828. https://doi.org/10.1073/pnas.72.7.2824 (1975).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Barrett, M. et al. Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J. Comp. Physiol. A https://doi.org/10.1007/s00359-021-01492-4 (2021).

    Article 

    Google Scholar 

  • 22.

    Woodgate, J. L. et al. Harmonic radar tracking reveals that honeybee drones navigate between multiple aerial leks. iScience https://doi.org/10.1016/j.isci.2021.102499 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Sovrano, V. A., Potrich, D. & Vallortigara, G. Learning of geometry and features in bumblebees (Bombus terrestris). J. Comp. Psychol. 127, 312. https://doi.org/10.1037/a0032040 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Sovrano, V. A., Rigosi, E. & Vallortigara, G. Spatial reorientation by geometry in bumblebees. PLoS ONE 7, e37449. https://doi.org/10.1371/journal.pone.0037449 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Wcislo, W. T. et al. The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): An escape from competitors and enemies?. Biol. J. Linn. Soc. 83, 377–387. https://doi.org/10.1111/j.1095-8312.2004.00399.x (2004).

    Article 

    Google Scholar 

  • 26.

    Smith, A. R., Kapheim, K. M., Kingwell, C. J. & Wcislo, W. T. A split sex ratio in solitary and social nests of a facultatively social bee. Biol. Lett. 15, 20180740. https://doi.org/10.1098/rsbl.2018.0740 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation (Oxford University Press on Demand, 2010).

    Book 

    Google Scholar 

  • 28.

    Kapheim, K. M., Smith, A. R., Nonacs, P., Wcislo, W. T. & Wayne, R. K. Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behav. Ecol. Sociobiol. 67, 331–340. https://doi.org/10.1007/s00265-012-1453-x (2013).

    Article 

    Google Scholar 

  • 29.

    Fahrbach, S. E. Structure of the mushroom bodies of the insect brain. Annu. Rev. Entomol. 51, 209–232. https://doi.org/10.1146/annurev.ento.51.110104.150954 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Seid, M. A. & Junge, E. Social isolation and brain development in the ant Camponotus floridanus. Sci. Nat. 103, 42. https://doi.org/10.1007/s00114-016-1364-1 (2016).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Cabirol, A., Brooks, R., Groh, C., Barron, A. B. & Devaud, J.-M. Experience during early adulthood shapes the learning capacities and the number of synaptic boutons in the mushroom bodies of honey bees (Apis mellifera). Learn. Mem. 24, 557–562. https://doi.org/10.1101/lm.045492.117 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Maleszka, J., Barron, A. B., Helliwell, P. G. & Maleszka, R. Effect of age, behaviour and social environment on honey bee brain plasticity. J. Comp. Physiol. A 195, 733–740. https://doi.org/10.1007/s00359-009-0449-0 (2009).

    Article 

    Google Scholar 

  • 33.

    Boomsma, J. J., Baer, B. & Heinze, J. The evolution of male traits in social insects. Annu. Rev. Entomol. 50, 395–420. https://doi.org/10.1146/annurev.ento.50.071803.130416 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Heinze, J. & Schrempf, A. Aging and reproduction in social insects—A mini-review. Gerontology 54, 160–167. https://doi.org/10.1159/000122472 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Hrassnigg, N. & Crailsheim, K. Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36, 255–277. https://doi.org/10.1051/apido:2005015 (2005).

    Article 

    Google Scholar 

  • 36.

    Wilson, E. O. The Insect Societies (Belknap, 1971).

    Google Scholar 

  • 37.

    Michener, C. D. The Social Behavior of the Bees (Harvard University Press, 1974).

    Google Scholar 

  • 38.

    Herndon, J. D. Investigating nest box utilization by bumble bees and reproductive development of male bumble bees. Master’s thesis. https://doi.org/10.26076/2256-306b (2020).

  • 39.

    Alford, D. V. Bumblebees (Davis-Poynter, 1975).

    Google Scholar 

  • 40.

    Valterová, I., Martinet, B., Michez, D., Rasmont, P. & Brasero, N. Sexual attraction: A review of bumblebee male pheromones. Z. Naturforschung C 74, 233–250. https://doi.org/10.1515/znc-2019-0003 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Montgomery, S. H., Merrill, R. M. & Ott, S. R. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity. J. Comp. Neurol. 524, 1747–1769. https://doi.org/10.1002/cne.23993 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Muth, F., Tripodi, A. D., Bonilla, R., Strange, J. P. & Leonard, A. S. No sex differences in learning in wild bumblebees. Behav. Ecol. https://doi.org/10.1093/beheco/arab013 (2021).

    Article 

    Google Scholar 

  • 43.

    Kapheim, K. M., Chan, T.-Y., Smith, A., Wcislo, W. T. & Nonacs, P. Ontogeny of division of labor in a facultatively eusocial sweat bee Megalopta genalis. Insectes Soc. 63, 185–191. https://doi.org/10.1007/s00040-015-0454-y (2016).

    Article 

    Google Scholar 

  • 44.

    Barrows, E. M. Mating behavior in halictine bees (Hymenoptera: Halictidae): I, patrolling and age-specific behavior in males. J. Kans. Entomol. Soc. 49, 105–119 (1976).

    Google Scholar 

  • 45.

    Snodgrass, R. E. Anatomy of the Honey Bee (Comstock Publishing Associates, 1956).

    Google Scholar 

  • 46.

    Harbo, J. R. In Bee Genetics and Bee Breeding (ed. Rinderer, T. E.) 361–387 (Academic Press, 1986).

    Chapter 

    Google Scholar 

  • 47.

    O’Donnell, S. The function of male dominance in the Eusocial wasp, Mischocyttarus mastigophorus (Hymenoptera: Vespidae). Ethology 105, 273–282. https://doi.org/10.1046/j.1439-0310.1999.00382.x (1999).

    Article 

    Google Scholar 

  • 48.

    O’Donnell, S., Fiocca, K. & Congdon, R. Social network analysis of male dominance in the paper wasp Mischocyttarus mastigophorus (Hymenoptera: Vespidae). J. Insect Behav. 34, 106–113. https://doi.org/10.1007/s10905-021-09774-0 (2021).

    Article 

    Google Scholar 

  • 49.

    Molina, Y. & O’Donnell, S. Males exhibit novel relationships of dominance with nest departure in the social paper wasp Mischocyttarus mastigophorus (Hymenoptera: Vespidae). Ethology 115, 738–746. https://doi.org/10.1111/j.1439-0310.2009.01659.x (2009).

    Article 

    Google Scholar 

  • 50.

    Ismail, N., Robinson, G. E. & Fahrbach, S. E. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc. Natl. Acad. Sci. USA 103, 207–211. https://doi.org/10.1073/pnas.0508318102 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Kraft, N., Spaethe, J., Rössler, W. & Groh, C. Neuronal plasticity in the mushroom-body calyx of bumble bee workers during early adult development. Dev. Neurobiol. 79, 287–302. https://doi.org/10.1002/dneu.22678 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Riveros, A. J. & Gronenberg, W. Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain Behav. Evol. 75, 138–148. https://doi.org/10.1159/000306506 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Heinrich, B. Bumblebee Economics (Harvard University Press, 2004).

    Google Scholar 

  • 54.

    Jaumann, S., Seid, M. A., Simons, M. & Smith, A. R. Queen dominance may reduce worker mushroom body size in a social bee. Dev. Neurobiol. 79, 596–607. https://doi.org/10.1002/dneu.22705 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Smith, A. R., Seid, M. A., Jimenez, L. C. & Wcislo, W. T. Socially induced brain development in a facultatively eusocial sweat bee Megalopta genalis (Halictidae). Proc. R. Soc. B Biol. Sci. 277, 2157–2163. https://doi.org/10.1098/rspb.2010.0269 (2010).

    Article 

    Google Scholar 

  • 56.

    Smith, A. R., Wcislo, W. T. & O’Donnell, S. Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 61, 1111–1120. https://doi.org/10.1007/s00265-006-0344-4 (2007).

    Article 

    Google Scholar 

  • 57.

    Withers, G. S., Day, N. F., Talbot, E. F., Dobson, H. E. & Wallace, C. S. Experience-dependent plasticity in the mushroom bodies of the solitary bee Osmia lignaria (Megachilidae). Dev. Neurobiol. 68, 73–82. https://doi.org/10.1002/dneu.20574 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Hagadorn, M. A., Johnson, M. M., Smith, A. R., Seid, M. A. & Kapheim, K. M. Experience, but not age, is associated with volumetric mushroom body expansion in solitary alkali bees. J. Exp. Biol. https://doi.org/10.1242/jeb.238899 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 59.

    Cnaani, J., Schmid-Hempel, R. & Schmidt, J. O. Colony development, larval development and worker reproduction in Bombus impatiens Cresson. Insectes Soc. 49, 164–170. https://doi.org/10.1007/s00040-002-8297-8 (2002).

    Article 

    Google Scholar 

  • 60.

    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J Cerebr. Blood F. Met. 40, 1769–1777. https://doi.org/10.1371/journal.pbio.3000410 (2020).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Zukor, K. A., Kent, D. T. & Odelberg, S. J. Fluorescent whole-mount method for visualizing three-dimensional relationships in intact and regenerating adult newt spinal cords. Dev. Dyn. 239, 3048–3057. https://doi.org/10.1002/dvdy.22441 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Fiala, J. C. Reconstruct: A free editor for serial section microscopy. J. Microsc. 218, 52–61. https://doi.org/10.1111/j.1365-2818.2005.01466.x (2005).

    MathSciNet 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).

    Google Scholar 

  • 64.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).

    Book 

    Google Scholar 

  • 65.

    Torchiano, M. Effsize—A package for efficient effect size computation v. 0.8.1. https://doi.org/10.5281/zenodo.196082 (2016).

  • 66.

    Hagadorn, M. A. et al. Data from: Age-related mushroom body expansion in male sweat bees and bumble bees data sets. Dryad. https://doi.org/10.5061/dryad.sj3tx964p (2021).

    Article 

    Google Scholar 

  • Comments are closed.