Species-specific transcriptomic adjustments upon respiratory syncytial virus an infection in cotton rats | Scientific Experiences – Nature.com
[ad_1]
Shi, T. et al. World, regional, and nationwide illness burden estimates of acute decrease respiratory infections resulting from respiratory syncytial virus in younger kids in 2015: a scientific evaluation and modelling examine. Lancet 390, 946–958 (2017).
The I-RSVSG. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus an infection in high-risk infants. Pediatrics 102, 531–537 (1998).
Xing, Y. & Proesmans, M. New therapies for acute RSV infections: the place are we?. Eur J Pediatr 178, 131–138 (2019).
Fulginiti, V. A. et al. Respiratory virus immunization. I. A discipline trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am. J. Epidemiol. 89, 435–448 (1969).
Chin, J., Magoffin, R. L., Shearer, L. A., Schieble, J. H. & Lennette, E. H. Discipline analysis of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric inhabitants. Am. J. Epidemiol. 89, 449–463 (1969).
Kapikian, A. Z., Mitchell, R. H., Chanock, R. M., Shvedoff, R. A. & Stewart, C. E. An epidemiologic examine of altered medical reactivity to respiratory syncytial (RS) virus an infection in kids beforehand vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol. 89, 405–421 (1969).
Endt, Ok. et al. A recombinant MVA-based RSV vaccine induces T-cell and antibody responses that cooperate within the safety in opposition to RSV an infection. Entrance Immunol. 13, 841471 (2022).
Detalle, L. et al. Era and characterization of ALX-0171, a potent novel therapeutic nanobody for the remedy of respiratory syncytial virus an infection. Antimicrob Brokers Chemother. 60, 6–13 (2016).
Tang, W. et al. Small molecule inhibits respiratory syncytial virus entry and an infection by blocking the interplay of the viral fusion protein with the cell membrane. FASEB J. 33, 4287–4299 (2019).
Shan, J., Britton, P. N., King, C. L. & Booy, R. The immunogenicity and security of respiratory syncytial virus vaccines in growth: A scientific evaluation. Influenza Different Respir Viruses 15, 539–551 (2021).
Prince, G. A., Jenson, A. B., Horswood, R. L., Camargo, E. & Chanock, R. M. The pathogenesis of respiratory syncytial virus an infection in cotton rats. Am. J. Pathol. 93, 771–791 (1978).
Graham, B. S., Perkins, M. D., Wright, P. F. & Karzon, D. T. Main respiratory syncytial virus an infection in mice. J. Med. Virol. 26, 153–162 (1988).
Grieves, J. L., Yin, Z., Durbin, R. Ok. & Durbin, J. E. Acute and power airway illness after human respiratory syncytial virus an infection in cotton rats (Sigmodon hispidus). Comp. Med. 65, 315–326 (2015).
Rodriguez, W. J. et al. Respiratory syncytial virus (RSV) immune globulin intravenous remedy for RSV decrease respiratory tract an infection in infants and younger kids at excessive threat for extreme RSV infections: Respiratory Syncytial Virus Immune Globulin Research Group. Pediatrics 99, 454–461 (1997).
Prince, G. A., Curtis, S. J., Yim, Ok. C. & Porter, D. D. Vaccine-enhanced respiratory syncytial virus illness in cotton rats following immunization with Lot 100 or a newly ready reference vaccine. J. Gen. Virol. 82, 2881–2888 (2001).
Prince, G. A. et al. Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactiva ted virus. J. Virol. 57, 721–728 (1986).
Ottolini, M. G., Curtis, S. R., Mathews, A., Ottolini, S. R. & Prince, G. A. Palivizumab is very efficient in suppressing respiratory syncytial virus in an immunosuppressed animal mannequin. Bone Marrow Transplant 29, 117–120 (2002).
Blanco, J. C. et al. Receptor characterization and susceptibility of cotton rats to avian and 2009 pandemic influenza virus strains. J. Virol. 87, 2036–2045 (2013).
Ottolini, M. G. et al. The cotton rat gives a helpful small-animal mannequin for the examine of influenza virus pathogenesis. J. Gen. Virol. 86, 2823–2830 (2005).
Ottolini, M. G., Porter, D. D., Hemming, V. G. & Prince, G. A. Enhanced pulmonary pathology in cotton rats upon problem after immunization with inactivated parainfluenza virus 3 vaccines. Viral Immunol. 13, 231–236 (2000).
Ottolini, M. G., Porter, D. D., Blanco, J. C. & Prince, G. A. A cotton rat mannequin of human parainfluenza 3 laryngotracheitis: Virus development, pathology, and remedy. J. Infect. Dis. 186, 1713–1717 (2002).
Pfeuffer, J., Puschel, Ok., Meulen, V., Schneider-Schaulies, J. & Niewiesk, S. Extent of measles virus unfold and immune suppression differentiates between wild-type and vaccine strains within the cotton rat mannequin (Sigmodon hispidus). J. Virol. 77, 150–158 (2003).
Hamelin, M. E. et al. Pathogenesis of human metapneumovirus lung an infection in BALB/c mice and cotton rats. J. Virol. 79, 8894–8903 (2005).
Patel, M. C. et al. Enterovirus D-68 an infection, prophylaxis, and vaccination in a novel permissive animal mannequin, the cotton rat (Sigmodon hispidus). PLoS ONE 11, e0166336 (2016).
Blanco, J. C. et al. Prophylactic antibody remedy and intramuscular immunization scale back infectious human rhinovirus 16 load within the decrease respiratory tract of challenged cotton rats. Trials Vaccinol 3, 52–60 (2014).
Boukhvalova, M. S., Prince, G. A. & Blanco, J. C. The cotton rat mannequin of respiratory viral infections. Biologicals 37, 152–159 (2009).
Rajagopala, S. V. et al. Cotton rat lung transcriptome reveals host immune response to Respiratory Syncytial Virus an infection. Sci. Rep. 8, 11318–11318 (2018).
Porter, D. D., Prince, G. A., Hemming, V. G. & Porter, H. G. Pathogenesis of human parainfluenza virus 3 an infection in two species of cotton rats: Sigmodon hispidus develops bronchiolitis, whereas Sigmodon fulviventer develops interstitial pneumonia. J. Virol. 65, 103–111 (1991).
Langley, R. J., Prince, G. A. & Ginsberg, H. S. HIV type-1 an infection of the cotton rat (Sigmodon fulviventer and S. hispidus). Proc. Natl. Acad. Sci. USA 95, 14355–14360 (1998).
Strickland, B. A. et al. Microbial neighborhood construction and composition is related to host species and intercourse in Sigmodon cotton rats. Anim. Microbiome 3, 29 (2021).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq utilizing the Trinity platform for reference era and evaluation. Nat. Protoc. 8, 1494–1512 (2013).
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing information. Bioinformatics 28, 3150–3152 (2012).
Gilbert D. Gene-omes constructed from mRNA seq not genome DNA. seventh annual arthropod genomics symposium, Notre Dame 2013.
Moreno-Santillan, D. D., Machain-Williams, C., Hernandez-Montes, G. & Ortega, J. De Novo transcriptome meeting and practical annotation in 5 species of bats. Sci. Rep. 9, 6222 (2019).
Thunders, M., Cavanagh, J. & Li, Y. De novo transcriptome meeting, practical annotation and differential gene expression evaluation of juvenile and grownup E. fetida, a mannequin oligochaete utilized in ecotoxicological research. Biol. Res. 50, 7 (2017).
Rajagopala, S. V. et al. Cotton rat lung transcriptome reveals host immune response to Respiratory syncytial virus an infection. Sci. Rep. 8, 1–12 (2018).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550–550 (2014).
Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).
Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO replace: Novel and streamlined workflows together with broader and deeper phylogenetic protection for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
UniProt, C. UniProt: The common protein knowledgebase in 2021. Nucleic Acids Res 49, D480–D489 (2021).
Camacho, C. et al. BLAST+: structure and purposes. BMC Bioinform. 10, 421 (2009).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Ashburner, M. et al. Gene ontology: Software for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource based mostly on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).
Younger, M. D., Wakefield, M. J., Smyth, G. Ok. & Oshlack, A. Gene ontology evaluation for RNA-seq: accounting for choice bias. Genome Biol 11, R14 (2010).
Cardoso-Silva, C. B. et al. De novo meeting and transcriptome evaluation of contrasting sugarcane varieties. PLoS ONE 9, e88462 (2014).
Jumat, M. R. et al. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res. 114, 11–20 (2015).
Zaas, A. Ok. et al. Gene expression signatures diagnose influenza and different symptomatic respiratory viral infections in people. Cell Host Microbe 6, 207–217 (2009).
Gao, J. et al. IFI27 might predict and consider the severity of respiratory syncytial virus an infection in preterm infants. Hereditas 158, 3 (2021).
Lindell, D. M., Lane, T. E. & Lukacs, N. W. CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus an infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur. J. Immunol. 38, 2168–2179 (2008).
Vissers, M. et al. Antibodies improve CXCL10 manufacturing throughout RSV an infection of toddler and grownup immune cells. Cytokine 76, 458–464 (2015).
Li, L., Ni, Y. A., Track, Z., Yi, Z. & Wang, F. Identification of pathogenic genes and transcription components in respiratory syncytial virus. BMC Pediatr 21, 27 (2021).
Pletneva, L. M., Haller, O., Porter, D. D., Prince, G. A. & Blanco, J. C. Interferon-inducible Mx gene expression in cotton rats: cloning, characterization, and expression throughout influenza viral an infection. J Interferon Cytokine Res 26, 914–921 (2006).
Behera, A. Ok., Kumar, M., Lockey, R. F. & Mohapatra, S. S. 2’-5’ Oligoadenylate synthetase performs a essential function in interferon-gamma inhibition of respiratory syncytial virus an infection of human epithelial cells. J. Biol. Chem. 277, 25601–25608 (2002).
Gonzalez-Sanz, R. et al. ISG15 is upregulated in respiratory syncytial virus an infection and reduces virus development via protein ISGylation. J. Virol. 90, 3428–3438 (2016).
Fink, Ok. et al. IFNbeta/TNFalpha synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res. 23, 673–690 (2013).
Guo, X. et al. Respiratory syncytial virus an infection upregulates NLRC5 and main histocompatibility advanced class I expression via RIG-I induction in airway epithelial cells. J. Virol. 89, 7636–7645 (2015).
Shirato, Ok., Ujike, M., Kawase, M. & Matsuyama, S. Elevated replication of respiratory syncytial virus within the presence of cytokeratin 8 and 18. J. Med. Virol. 84, 365–370 (2012).
Edwards, Ok. M., Snyder, P. N. & Wright, P. F. Complement activation by respiratory syncytial virus-infected cells. Arch. Virol. 88, 49–56 (1986).
Hashimoto, Ok. et al. Signaling via the prostaglandin I2 receptor IP protects in opposition to respiratory syncytial virus-induced sickness. J. Virol. 78, 10303–10309 (2004).
Zhuang, X., Rambhatla, S. B., Lai, A. G. & McKeating, J. A. Interaction between circadian clock and viral an infection. J. Mol. Med. (Berl) 95, 1283–1289 (2017).
Edgar, R. S. et al. Cell autonomous regulation of herpes and influenza virus an infection by the circadian clock. Proc Natl Acad Sci USA 113, 10085–10090 (2016).
Majumdar, T., Dhar, J., Patel, S., Kondratov, R. & Barik, S. Circadian transcription issue BMAL1 regulates innate immunity in opposition to choose RNA viruses. Innate Immun. 23, 147–154 (2017).
Boukhvalova, M. S., Prince, G. A. & Blanco, J. C. G. The cotton rat mannequin of respiratory viral infections. Biolog. J. Int. Assoc. Biol. Normal. 37, 152–159 (2009).
Pletneva, L. M., Haller, O., Porter, D. D., Prince, G. A. & Blanco, J. C. G. Induction of sort I interferons and interferon-inducible Mx genes throughout respiratory syncytial virus an infection and reinfection in cotton rats. J. Gen. Virol. 89, 261–270 (2008).
Uthaiah, R. C., Praefcke, G. J., Howard, J. C. & Herrmann, C. IIGP1, an interferon-gamma-inducible 47-kDa GTPase of the mouse, exhibiting cooperative enzymatic exercise and GTP-dependent multimerization. J. Biol. Chem 278, 29336–29343 (2003).
Taylor, G. A. et al. Pathogen-specific lack of host resistance in mice missing the IFN-gamma-inducible gene IGTP. Proc. Natl. Acad. Sci. USA 97, 751–755 (2000).
Wen, A. Y., Sakamoto, Ok. M. & Miller, L. S. The function of the transcription issue CREB in immune perform. J. Immunol. 185, 6413–6419 (2010).
Tomalka, J. A. et al. The transcription issue CREB1 is a mechanistic driver of immunogenicity and diminished HIV-1 acquisition following ALVAC vaccination. Nat. Immunol. 22, 1294–1305 (2021).
De Groote, M. A. et al. Discovery and validation of a six-marker serum protein signature for the analysis of lively pulmonary tuberculosis. J. Clin. Microbiol. 55, 3057–3071 (2017).
Blanco, J. C., Boukhvalova, M. S., Pletneva, L. M., Shirey, Ok. A. & Vogel, S. N. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects in opposition to RSV-induced replication and lung pathology. Vaccine 32, 1495–1500 (2014).
Boukhvalova, M. S., Prince, G. A. & Blanco, J. C. Respiratory syncytial virus infects and abortively replicates within the lungs regardless of preexisting immunity. J. Virol. 81, 9443–9450 (2007).
Livak, Ok. J. & Schmittgen, T. D. Evaluation of relative gene expression information utilizing real-time quantitative PCR and the two(-Delta Delta C(T)) Methodology. Strategies 25, 402–408 (2001).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).
Andrews S. FastQC: a top quality management software for prime throughput sequence information. Obtainable on-line at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
(2010).
Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-Seq information with or and not using a reference genome. BMC Bioinform. 12, 323–323 (2011).
Mistry, J. et al. Pfam: The protein households database in 2021. Nucleic Acids Res 49, D412–D419 (2021).
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov mannequin: utility to finish genomes. J. Mol. Biol. 305, 567–580 (2001).
Almagro Armenteros, J. J. et al. SignalP 5.0 improves sign peptide predictions utilizing deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon gives quick and bias-aware quantification of transcript expression. Nat. Strategies 14, 417–419 (2017).
Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
[ad_2]
Comments are closed.