Species-specific transcriptomic adjustments upon respiratory syncytial virus an infection in cotton rats | Scientific Experiences – Nature.com

[ad_1]

  • Shi, T. et al. World, regional, and nationwide illness burden estimates of acute decrease respiratory infections resulting from respiratory syncytial virus in younger kids in 2015: a scientific evaluation and modelling examine. Lancet 390, 946–958 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • The I-RSVSG. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus an infection in high-risk infants. Pediatrics 102, 531–537 (1998).

    Article 

    Google Scholar
     

  • Xing, Y. & Proesmans, M. New therapies for acute RSV infections: the place are we?. Eur J Pediatr 178, 131–138 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fulginiti, V. A. et al. Respiratory virus immunization. I. A discipline trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am. J. Epidemiol. 89, 435–448 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chin, J., Magoffin, R. L., Shearer, L. A., Schieble, J. H. & Lennette, E. H. Discipline analysis of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric inhabitants. Am. J. Epidemiol. 89, 449–463 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kapikian, A. Z., Mitchell, R. H., Chanock, R. M., Shvedoff, R. A. & Stewart, C. E. An epidemiologic examine of altered medical reactivity to respiratory syncytial (RS) virus an infection in kids beforehand vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol. 89, 405–421 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Endt, Ok. et al. A recombinant MVA-based RSV vaccine induces T-cell and antibody responses that cooperate within the safety in opposition to RSV an infection. Entrance Immunol. 13, 841471 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Detalle, L. et al. Era and characterization of ALX-0171, a potent novel therapeutic nanobody for the remedy of respiratory syncytial virus an infection. Antimicrob Brokers Chemother. 60, 6–13 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang, W. et al. Small molecule inhibits respiratory syncytial virus entry and an infection by blocking the interplay of the viral fusion protein with the cell membrane. FASEB J. 33, 4287–4299 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shan, J., Britton, P. N., King, C. L. & Booy, R. The immunogenicity and security of respiratory syncytial virus vaccines in growth: A scientific evaluation. Influenza Different Respir Viruses 15, 539–551 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prince, G. A., Jenson, A. B., Horswood, R. L., Camargo, E. & Chanock, R. M. The pathogenesis of respiratory syncytial virus an infection in cotton rats. Am. J. Pathol. 93, 771–791 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham, B. S., Perkins, M. D., Wright, P. F. & Karzon, D. T. Main respiratory syncytial virus an infection in mice. J. Med. Virol. 26, 153–162 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grieves, J. L., Yin, Z., Durbin, R. Ok. & Durbin, J. E. Acute and power airway illness after human respiratory syncytial virus an infection in cotton rats (Sigmodon hispidus). Comp. Med. 65, 315–326 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez, W. J. et al. Respiratory syncytial virus (RSV) immune globulin intravenous remedy for RSV decrease respiratory tract an infection in infants and younger kids at excessive threat for extreme RSV infections: Respiratory Syncytial Virus Immune Globulin Research Group. Pediatrics 99, 454–461 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prince, G. A., Curtis, S. J., Yim, Ok. C. & Porter, D. D. Vaccine-enhanced respiratory syncytial virus illness in cotton rats following immunization with Lot 100 or a newly ready reference vaccine. J. Gen. Virol. 82, 2881–2888 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prince, G. A. et al. Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactiva ted virus. J. Virol. 57, 721–728 (1986).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ottolini, M. G., Curtis, S. R., Mathews, A., Ottolini, S. R. & Prince, G. A. Palivizumab is very efficient in suppressing respiratory syncytial virus in an immunosuppressed animal mannequin. Bone Marrow Transplant 29, 117–120 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blanco, J. C. et al. Receptor characterization and susceptibility of cotton rats to avian and 2009 pandemic influenza virus strains. J. Virol. 87, 2036–2045 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ottolini, M. G. et al. The cotton rat gives a helpful small-animal mannequin for the examine of influenza virus pathogenesis. J. Gen. Virol. 86, 2823–2830 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ottolini, M. G., Porter, D. D., Hemming, V. G. & Prince, G. A. Enhanced pulmonary pathology in cotton rats upon problem after immunization with inactivated parainfluenza virus 3 vaccines. Viral Immunol. 13, 231–236 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ottolini, M. G., Porter, D. D., Blanco, J. C. & Prince, G. A. A cotton rat mannequin of human parainfluenza 3 laryngotracheitis: Virus development, pathology, and remedy. J. Infect. Dis. 186, 1713–1717 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Pfeuffer, J., Puschel, Ok., Meulen, V., Schneider-Schaulies, J. & Niewiesk, S. Extent of measles virus unfold and immune suppression differentiates between wild-type and vaccine strains within the cotton rat mannequin (Sigmodon hispidus). J. Virol. 77, 150–158 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamelin, M. E. et al. Pathogenesis of human metapneumovirus lung an infection in BALB/c mice and cotton rats. J. Virol. 79, 8894–8903 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patel, M. C. et al. Enterovirus D-68 an infection, prophylaxis, and vaccination in a novel permissive animal mannequin, the cotton rat (Sigmodon hispidus). PLoS ONE 11, e0166336 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blanco, J. C. et al. Prophylactic antibody remedy and intramuscular immunization scale back infectious human rhinovirus 16 load within the decrease respiratory tract of challenged cotton rats. Trials Vaccinol 3, 52–60 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boukhvalova, M. S., Prince, G. A. & Blanco, J. C. The cotton rat mannequin of respiratory viral infections. Biologicals 37, 152–159 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rajagopala, S. V. et al. Cotton rat lung transcriptome reveals host immune response to Respiratory Syncytial Virus an infection. Sci. Rep. 8, 11318–11318 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Porter, D. D., Prince, G. A., Hemming, V. G. & Porter, H. G. Pathogenesis of human parainfluenza virus 3 an infection in two species of cotton rats: Sigmodon hispidus develops bronchiolitis, whereas Sigmodon fulviventer develops interstitial pneumonia. J. Virol. 65, 103–111 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Langley, R. J., Prince, G. A. & Ginsberg, H. S. HIV type-1 an infection of the cotton rat (Sigmodon fulviventer and S. hispidus). Proc. Natl. Acad. Sci. USA 95, 14355–14360 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strickland, B. A. et al. Microbial neighborhood construction and composition is related to host species and intercourse in Sigmodon cotton rats. Anim. Microbiome 3, 29 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq utilizing the Trinity platform for reference era and evaluation. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing information. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gilbert D. Gene-omes constructed from mRNA seq not genome DNA. seventh annual arthropod genomics symposium, Notre Dame 2013.

  • Moreno-Santillan, D. D., Machain-Williams, C., Hernandez-Montes, G. & Ortega, J. De Novo transcriptome meeting and practical annotation in 5 species of bats. Sci. Rep. 9, 6222 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thunders, M., Cavanagh, J. & Li, Y. De novo transcriptome meeting, practical annotation and differential gene expression evaluation of juvenile and grownup E. fetida, a mannequin oligochaete utilized in ecotoxicological research. Biol. Res. 50, 7 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rajagopala, S. V. et al. Cotton rat lung transcriptome reveals host immune response to Respiratory syncytial virus an infection. Sci. Rep. 8, 1–12 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550–550 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO replace: Novel and streamlined workflows together with broader and deeper phylogenetic protection for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • UniProt, C. UniProt: The common protein knowledgebase in 2021. Nucleic Acids Res 49, D480–D489 (2021).

    Article 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: structure and purposes. BMC Bioinform. 10, 421 (2009).

    Article 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: Software for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource based mostly on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Younger, M. D., Wakefield, M. J., Smyth, G. Ok. & Oshlack, A. Gene ontology evaluation for RNA-seq: accounting for choice bias. Genome Biol 11, R14 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cardoso-Silva, C. B. et al. De novo meeting and transcriptome evaluation of contrasting sugarcane varieties. PLoS ONE 9, e88462 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jumat, M. R. et al. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res. 114, 11–20 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaas, A. Ok. et al. Gene expression signatures diagnose influenza and different symptomatic respiratory viral infections in people. Cell Host Microbe 6, 207–217 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, J. et al. IFI27 might predict and consider the severity of respiratory syncytial virus an infection in preterm infants. Hereditas 158, 3 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindell, D. M., Lane, T. E. & Lukacs, N. W. CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus an infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur. J. Immunol. 38, 2168–2179 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vissers, M. et al. Antibodies improve CXCL10 manufacturing throughout RSV an infection of toddler and grownup immune cells. Cytokine 76, 458–464 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, L., Ni, Y. A., Track, Z., Yi, Z. & Wang, F. Identification of pathogenic genes and transcription components in respiratory syncytial virus. BMC Pediatr 21, 27 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pletneva, L. M., Haller, O., Porter, D. D., Prince, G. A. & Blanco, J. C. Interferon-inducible Mx gene expression in cotton rats: cloning, characterization, and expression throughout influenza viral an infection. J Interferon Cytokine Res 26, 914–921 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Behera, A. Ok., Kumar, M., Lockey, R. F. & Mohapatra, S. S. 2’-5’ Oligoadenylate synthetase performs a essential function in interferon-gamma inhibition of respiratory syncytial virus an infection of human epithelial cells. J. Biol. Chem. 277, 25601–25608 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gonzalez-Sanz, R. et al. ISG15 is upregulated in respiratory syncytial virus an infection and reduces virus development via protein ISGylation. J. Virol. 90, 3428–3438 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fink, Ok. et al. IFNbeta/TNFalpha synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res. 23, 673–690 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, X. et al. Respiratory syncytial virus an infection upregulates NLRC5 and main histocompatibility advanced class I expression via RIG-I induction in airway epithelial cells. J. Virol. 89, 7636–7645 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shirato, Ok., Ujike, M., Kawase, M. & Matsuyama, S. Elevated replication of respiratory syncytial virus within the presence of cytokeratin 8 and 18. J. Med. Virol. 84, 365–370 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards, Ok. M., Snyder, P. N. & Wright, P. F. Complement activation by respiratory syncytial virus-infected cells. Arch. Virol. 88, 49–56 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hashimoto, Ok. et al. Signaling via the prostaglandin I2 receptor IP protects in opposition to respiratory syncytial virus-induced sickness. J. Virol. 78, 10303–10309 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhuang, X., Rambhatla, S. B., Lai, A. G. & McKeating, J. A. Interaction between circadian clock and viral an infection. J. Mol. Med. (Berl) 95, 1283–1289 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Edgar, R. S. et al. Cell autonomous regulation of herpes and influenza virus an infection by the circadian clock. Proc Natl Acad Sci USA 113, 10085–10090 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Majumdar, T., Dhar, J., Patel, S., Kondratov, R. & Barik, S. Circadian transcription issue BMAL1 regulates innate immunity in opposition to choose RNA viruses. Innate Immun. 23, 147–154 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boukhvalova, M. S., Prince, G. A. & Blanco, J. C. G. The cotton rat mannequin of respiratory viral infections. Biolog. J. Int. Assoc. Biol. Normal. 37, 152–159 (2009).

    CAS 

    Google Scholar
     

  • Pletneva, L. M., Haller, O., Porter, D. D., Prince, G. A. & Blanco, J. C. G. Induction of sort I interferons and interferon-inducible Mx genes throughout respiratory syncytial virus an infection and reinfection in cotton rats. J. Gen. Virol. 89, 261–270 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uthaiah, R. C., Praefcke, G. J., Howard, J. C. & Herrmann, C. IIGP1, an interferon-gamma-inducible 47-kDa GTPase of the mouse, exhibiting cooperative enzymatic exercise and GTP-dependent multimerization. J. Biol. Chem 278, 29336–29343 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor, G. A. et al. Pathogen-specific lack of host resistance in mice missing the IFN-gamma-inducible gene IGTP. Proc. Natl. Acad. Sci. USA 97, 751–755 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wen, A. Y., Sakamoto, Ok. M. & Miller, L. S. The function of the transcription issue CREB in immune perform. J. Immunol. 185, 6413–6419 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tomalka, J. A. et al. The transcription issue CREB1 is a mechanistic driver of immunogenicity and diminished HIV-1 acquisition following ALVAC vaccination. Nat. Immunol. 22, 1294–1305 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Groote, M. A. et al. Discovery and validation of a six-marker serum protein signature for the analysis of lively pulmonary tuberculosis. J. Clin. Microbiol. 55, 3057–3071 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blanco, J. C., Boukhvalova, M. S., Pletneva, L. M., Shirey, Ok. A. & Vogel, S. N. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects in opposition to RSV-induced replication and lung pathology. Vaccine 32, 1495–1500 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boukhvalova, M. S., Prince, G. A. & Blanco, J. C. Respiratory syncytial virus infects and abortively replicates within the lungs regardless of preexisting immunity. J. Virol. 81, 9443–9450 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Livak, Ok. J. & Schmittgen, T. D. Evaluation of relative gene expression information utilizing real-time quantitative PCR and the two(-Delta Delta C(T)) Methodology. Strategies 25, 402–408 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andrews S. FastQC: a top quality management software for prime throughput sequence information. Obtainable on-line at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
    (2010).

  • Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-Seq information with or and not using a reference genome. BMC Bioinform. 12, 323–323 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Mistry, J. et al. Pfam: The protein households database in 2021. Nucleic Acids Res 49, D412–D419 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov mannequin: utility to finish genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Almagro Armenteros, J. J. et al. SignalP 5.0 improves sign peptide predictions utilizing deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon gives quick and bias-aware quantification of transcript expression. Nat. Strategies 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • [ad_2]

    Comments are closed.